第一步:剖析目标网页

观察该网页为异步还是同步加载,异步加载需去XHR获取数据包

获取数据包,观察有用的信息数据所在的位置

创建scrapy爬虫文件创建爬虫项目名文件夹项目

观察是post还是get恳求

若是post恳求快手怎么保存别人视频,观察多个数据包的payload是否一致

补充关于payload的知识点:

若恳求方式是post,参数用payload传,对应恳求写法如下:

非scrapy,在发送恳求时,应写为:

requests.post(url=url,headers=headers,json=data)

#快手短视频的例子
url = 'https://www.kuaishou.com/graphql'
headers = {
    'content-type': 'application/json',
'Cookie': 'clientid=3; did=web_f694eeea1a4227bf198e33436fbca07e; kpf=PC_WEB; kpn=KUAISHOU_VISION; ktrace-context=1|MS43NjQ1ODM2OTgyODY2OTgyLjUxNjI3NDU1LjE2NDQ3MzQ1Mzk3MjAuMTU5MzA1Ng==|MS43NjQ1ODM2OTgyODY2OTgyLjUzMjEzMzU2LjE2NDQ3MzQ1Mzk3MjAuMTU5MzA1Nw==|0|graphql-server|webservice|false|NA',
'Host': 'www.kuaishou.com',
'Origin': 'https://www.kuaishou.com',
'Referer': 'https://www.kuaishou.com/brilliant',
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/98.0.4758.82 Safari/537.36'
}
data = {"operationName":"brilliantTypeDataQuery","variables":{"hotChannelId":"00","page":"brilliant","pcursor":"1"},"query":"fragment feedContent on Feed {\n  type\n  author {\n    id\n    name\n    headerUrl\n    following\n    headerUrls {\n      url\n      __typename\n    }\n    __typename\n  }\n  photo {\n    id\n    duration\n    caption\n    likeCount\n    realLikeCount\n    coverUrl\n    photoUrl\n    coverUrls {\n      url\n      __typename\n    }\n    timestamp\n    expTag\n    animatedCoverUrl\n    distance\n    videoRatio\n    liked\n    stereoType\n    __typename\n  }\n  canAddComment\n  llsid\n  status\n  currentPcursor\n  __typename\n}\n\nfragment photoResult on PhotoResult {\n  result\n  llsid\n  expTag\n  serverExpTag\n  pcursor\n  feeds {\n    ...feedContent\n    __typename\n  }\n  webPageArea\n  __typename\n}\n\nquery brilliantTypeDataQuery($pcursor: String, $hotChannelId: String, $page: String, $webPageArea: String) {\n  brilliantTypeData(pcursor: $pcursor, hotChannelId: $hotChannelId, page: $page, webPageArea: $webPageArea) {\n    ...photoResult\n    __typename\n  }\n}\n"}
# 传参要用json
response = requests.post(url=url,headers = headers,json=data)

第二步:创建scrapy爬虫文件

创建爬虫项目scrapystartproject爬虫项目名

cd爬虫项目名文件夹

scrapygenspider爬虫名爬虫名.com

第三步:在爬虫项目名下的爬虫名.py内,建模

更改起始访问url和域名

class Mp4Spider(scrapy.Spider):
    name = 'mp4'
    allowed_domains = ['kuaishou.com']   # 域名
    start_urls = ['https://www.kuaishou.com/graphql']   # 起始url

构建起始恳求

    def start_requests(self):
        headers = {
            "content-type": "application/json",
            "Cookie": "clientid=3; did=web_f694eeea1a4227bf198e33436fbca07e; ktrace-context=1|MS43NjQ1ODM2OTgyODY2OTgyLjMxMTgyNzM3LjE2NDQ3Mjg5NzE5OTYuMTgyMDg5OTg=|MS43NjQ1ODM2OTgyODY2OTgyLjU5ODgxNzI3LjE2NDQ3Mjg5NzE5OTYuMTgyMDg5OTk=|0|graphql-server|webservice|false|NA; kpf=PC_WEB; kpn=KUAISHOU_VISION",
            "Host": "www.kuaishou.com",
            "Origin": "https://www.kuaishou.com",
            "Referer": "https://www.kuaishou.com/brilliant",
            "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/98.0.4758.82 Safari/537.36",
        }
        data = {"operationName": "brilliantTypeDataQuery",
                "variables": {"hotChannelId": "00", "page": "brilliant", "pcursor": "1"},
                "query": "fragment feedContent on Feed {\n  type\n  author {\n    id\n    name\n    headerUrl\n    following\n    headerUrls {\n      url\n      __typename\n    }\n    __typename\n  }\n  photo {\n    id\n    duration\n    caption\n    likeCount\n    realLikeCount\n    coverUrl\n    photoUrl\n    coverUrls {\n      url\n      __typename\n    }\n    timestamp\n    expTag\n    animatedCoverUrl\n    distance\n    videoRatio\n    liked\n    stereoType\n    __typename\n  }\n  canAddComment\n  llsid\n  status\n  currentPcursor\n  __typename\n}\n\nfragment photoResult on PhotoResult {\n  result\n  llsid\n  expTag\n  serverExpTag\n  pcursor\n  feeds {\n    ...feedContent\n    __typename\n  }\n  webPageArea\n  __typename\n}\n\nquery brilliantTypeDataQuery($pcursor: String, $hotChannelId: String, $page: String, $webPageArea: String) {\n  brilliantTypeData(pcursor: $pcursor, hotChannelId: $hotChannelId, page: $page, webPageArea: $webPageArea) {\n    ...photoResult\n    __typename\n  }\n}\n"}
        # post请求,将payload用data接收
        # for循环模拟翻页
        for page in range(2):
            # 构造post请求对象
            yield scrapy.Request(
                url=self.start_urls[0],
                method='POST',    # 修改请求方式为post
                headers=headers,
                dont_filter=True,    # 不过滤相同的url 
                body=json.dumps(data)    # 用body请求体接收data,json.dumps()将字典转为字符串,因为body的数据格式需要为字符串
            )

解析恳求的数据

def parse(self, response):
    """
    获取响应的json数据
    :param response: 响应对象
    :return:
    """
    # 获取响应源码内容(str类型)
    json_str_data = response.body.decode()   # response.body的数据是二进制形式,要将二进制数据转为字符串
    # print(json_str_data)
    # 将字符串转为字典
    json_dict_data = json.loads(json_str_data)
    # print(json_dict_data)
    # 获取所有数据的大字典
    feeds_dict = json_dict_data['data']['brilliantTypeData']['feeds']
    for feeds in feeds_dict:
        item = {}   # 构建传入管道的item的字典形式的数据
        item['excel'] = 'excel数据'    # 用于区分保存至excel的数据和保存为视频的数据
        """获取文字数据"""
        # 作者id
        author_id = feeds['author']['id']
        item['author_id'] = author_id
        # 作者名字
        author_name = feeds['author']['name']
        item['author_name'] = author_name
        # 作品名字
        video_name = feeds['photo']['caption']
        item['video_name'] = video_name
        # 作品点赞量
        like = feeds['photo']['likeCount']
        item['like'] = like
        yield item
        """获取视频数据"""
        # 作品名字
        video_name = feeds['photo']['caption']
        # 视频二进制数据
        video_url = feeds['photo']['photoUrl']
        # 构造视频下载地址
        yield scrapy.Request(
            url=video_url,
            headers={
                "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/98.0.4758.82 Safari/537.36"},
            dont_filter=True,
            callback=self.parse_video_url,   # 调用def parse_video_url方法解析获取视频二进制数据
            meta={'video_name': video_name}    #meta用于方法之间参数的传递,将video_name传入def parse_video_url方法
        )

定义解析获取视频二补码数据的方式

def parse_video_url(self,response):
    item = {}      # 构建传入管道的item的字典形式的数据
    # 获取视频名称
    video_name = response.meta['video_name']  # 利用response.meta方法获取video_name的值
    item['video_name'] = video_name
    # 获取视频二进制数据
    video_byte = response.body   # response.body用于获取二进制数据
    item['video_byte'] = video_byte
    yield item     

第四步:将item数据传入管线,做数据保存

设置单独储存视频的文件夹快手怎么保存别人视频,防止视频直接储存在scrapy文件下,变得很乱

import os, xlwt, xlrd
from xlutils.copy import copy  
 # 要导的包
 
class Mp4SpiderPipeline:
    def open_spider(self, spider):
        self.path = os.getcwd() + '/快手视频/'
        if not os.path.exists(self.path):
            os.mkdir(self.path)

保存数据至excel模板,只须要更改第3,4,6,11,16,18行

    def process_item(self, item, spider):
        if 'excel' in item:   # 通过之前在建模步骤设置的excel特殊键值来判断数据是否保存至excel
            data = {
                '快手短视频数据': [item['author_id'],item['author_name'],item['video_name'], item['like']]
            }       # data要以字典形式传入
            os_mkdir_path = os.getcwd() + '/快手数据/'
            # 判断这个路径是否存在,不存在就创建
            if not os.path.exists(os_mkdir_path):
                os.mkdir(os_mkdir_path)
            # 判断excel表格是否存在           工作簿文件名称
            os_excel_path = os_mkdir_path + '快手数据.xls'
            if not os.path.exists(os_excel_path):
                # 不存在,创建工作簿(也就是创建excel表格)
                workbook = xlwt.Workbook(encoding='utf-8')
                """工作簿中创建新的sheet表"""  # 设置表名
                worksheet1 = workbook.add_sheet("快手短视频数据", cell_overwrite_ok=True)
                """设置sheet表的表头"""
                sheet1_headers = ('作者id', '作者名字', '作品名字', '作品点赞量')
                # 将表头写入工作簿
                for header_num in range(0, len(sheet1_headers)):
                    # 设置表格长度
                    worksheet1.col(header_num).width = 2560 * 3
                    # 写入            行, 列,           内容
                    worksheet1.write(0, header_num, sheet1_headers[header_num])
                # 循环结束,代表表头写入完成,保存工作簿
                workbook.save(os_excel_path)
            # 判断工作簿是否存在
            if os.path.exists(os_excel_path):
                # 打开工作簿
                workbook = xlrd.open_workbook(os_excel_path)
                # 获取工作薄中所有表的个数
                sheets = workbook.sheet_names()
                for i in range(len(sheets)):
                    for name in data.keys():
                        worksheet = workbook.sheet_by_name(sheets[i])
                        # 获取工作薄中所有表中的表名与数据名对比
                        if worksheet.name == name:
                            # 获取表中已存在的行数
                            rows_old = worksheet.nrows
                            # 将xlrd对象拷贝转化为xlwt对象
                            new_workbook = copy(workbook)
                            # 获取转化后的工作薄中的第i张表
                            new_worksheet = new_workbook.get_sheet(i)
                            for num in range(0, len(data[name])):
                                new_worksheet.write(rows_old, num, data[name][num])
                            new_workbook.save(os_excel_path)
            print(f"{item['video_name']}excel数据---------下载完成!!!")

数据保存为视频格式

else:
    title = item['video_name']
    data = item['video_byte']
    with open(self.path + title + '.mp4', 'wb') as f:   # 一定要加视频的后缀格式'.mp4'
        f.write(data)
    print(f'视频:{title}----------下载完成!!!')
    return item

要想使管线顺利运行,需在settings.py文件夹将以下几行代码激活

第五步:在__init__.py文件夹运行

运行之前,需在settings.py将以下几行代码注销

然后在__init__.py里输入代码如下

from scrapy import cmdline
cmdline.execute('scrapy crawl mp4 --nolog'.split(' '))
# cmdline.execute('scrapy crawl 爬虫名'.split(' ')),上面的mp4是我设置的爬虫名
# --nolog表示不打印红色的运行日志

没有运行日志的run界面